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Likelihood Ratios for Tir~~-Continuous

Data Models : The ~Fhite Noise Approach

- A. V. Balakrishnan
System Science Deperbt~ nt . 

-

University of California

Abstract We develop a foniTula for likelihood functionals for signals in additive

noise in the tin~~-continuous case using a white noise approach. It is shc#-zrt that

the formula differs from the well-Ictown formula in the Wiener process version by the

appearance of art additional tenr~ corresponding to the conditional ~T~~an square

filtering error. 
- 

- . 
-
. .

. 

-

1. Intr9ductiOfl . In much of engineering literature on identification (too

voluminous to be referred to individually . See the several v lu~nes of proceeclirtgs

of IFAC Symposia on System Identification end ?ararzteter Estiz’ation, 1970, 1973 and

1976) it ~s custov~ary to consider the observed data as sampled periodicall y in time

-- even when the basic pheno~~na are uodelled by tfr ~ -corttinuous differential

equations . The usual ‘hand-waving’ argument is then made that the ‘limiting’

continuous-tim e case is no u~ re than a mathematical detail; and that anyhow in

digital cai~puter processing, conversion to san?led data is a basic step. This is

indeed true; but the authors almost invariably proceed to us~ the in~de1: 
- 

- 

-

y~~~~S + N  
-

11 fl fl

where Cs~} is the information-bearing time series and the observation noise

series , and (this is the crucial point ) take CMI.~
} as a sequence of independent

variables. But this requires that the sampling rate be not more than twice the

noise bartà4idth , itself unknown. Of co~~se, to answer this objection ~ one can alloir

• 
(EI~I to be correlated ; but then the correlation f~xtction must be known. Now it is ver’



• 
t r ~r~’ l ~~ ,tic to requtre the COrn~1~ttiotI functioci of in~3truIw~nt noise ; and cv~~ wh~’rt

Jcrtwn , it adds a lot to the complication, but little to the perforf uric ’~. t~.’e r~iin—

tam that it is much better to tj sc~ a tj~~-contjn uoun rr odel -

yCt ) S(t ) + N (t )  - (2)

and a11o~x the sampling rate to be as high as the A--D converter wants to use. But

in the time—continuous model we are f aced with another problem; the basic tool Li

identification is the likelihood ratio (for fixed parerreters): the }~adori-Nikodyra

• derivative of the probability measure ind~iccd by the process y C )  to that induced

by N ( .) .  But this likelihood ratio is difficult to implement even when the spectrum

of N ( .)  is known, which it is not. Wnat we cart say for sure is that the band~rLdth

of the (instrument) noise is large comoared with that of the process S( ) . At this

poin t the earlier engineering literature used the notion of “white ‘ noise” a process

with constant spectral density over all frequenc~ns in a formal way. In the s )ctiEs -

it becane fashionab] e to replace this by the “~iiener process” nodal as 
- 

“rrore

rigorous”. Thus we replace (2) by -

I.t  -

Y(t) ~ S( a)th + W(t) (3)

where W (t ) is a Wiene r process . We have then , to be sure , the advantage of the

po rful machinery of Mart ingales and Ito integrals. In fact the likelihood

functiona l (for the case where signal and noise are independent which we sstnte

thruout ) can then be written dci~n as: [see (iB:

Exp — l,2L(
T 

II~(tfl I
2
dt — 2 

[ 
(~ (t) , dY(tfl}

where ~ (t) is the best n~ an square estimate of’ S(t) given the observaticn YCs) upto

time t. But the hodcer is that the second term is en Ito integral:

J (S(t) , dY(t) )
0



- : 1~iis integral is defined on the basis that Y(t) is of unbounded variation with

probability one. On the other hand ito p~tys ~cal ins t r’.nrent cart produce such a ~‘ave

form! Indeed , we must rto~.•7 go hack to (2) where it carra from and thus replace

• • 
- 

dYCt) by y (t)dt V 

-

This is all right if S(t) is d~tcr~ninistic; if not , we rio longer obtain the value

prescribed by the Ito formula ! In parti~ular, any algorithm based on it leads to

erroneous results. Most ai.rth~rs of paper’s on the subject probably have never 
- . -

.

• bothered to calculate anything based on actual data; and of course in arty digital

computer simulation it is possible to mask this oompletely. Indeed , alirost all

• 

• simulation models employ the discrete version (1). - 

- 

. ‘ 

-

- 
• .  Faced with this difficulty we have to exanine more precisely the model agairt .

• Thus what we want to exploit is the fact that the ban&idth of the noise is large

co~~ared to that of the process S( .) . Hence what is really needed is he -

‘asymptotic form’ of the likelihood functional as the banthidth goes to irLfir.ity

in an arbitrary manner.

Such a theory has been developed by the author using a precise notion of

white noise. See [2 )  for details. We take the ‘sample points ’ to be in a Hu bert

Space with Gauss measure theorem. Thus in (2) we oDnsider N (t) 0 < t  < T  as path-

wise square ir.tegr~able in t0 ,T]; as eleirents in the L~ -space L2 (R~ ; (0 ,T)), (the

observation having its range in Fh, n-dL’~~ns tonal Eucidean Space). Corresponding

to white noise with ‘unit ’ spectral density, we define the Gauss measure by:

J (N(t), h(t))dt • •

Ee 3 Exp — 1/2 ( (h(t), h(t))dt
sf0

for each hC •) in L2[R~; (0 ,T)) , defining thus the characteri stic function of the

Gauss weasure. • 

V

V — •- 
V r — .  

-



The difference between this set—up and the WViener ’—proce3s sct~up is siir ply

this . Let C~p~( ) }  denote a complete orthornoriral system in L2 [R~, (O )T)J. Then

c T -

- 4 [~~ (t) , N(t)]dt 
~rL

yield a sequence of zero.-n~an , unit variance Gaussians. The sanp le—space for the

sequence is £~~, since 
- - - 

• 
• 

V

- ~ T ,, V - 
- 

V

- 
V 

• Z ~~~~~ 1 • N(tYdt <~~ 
- - V - 

- 
-

• 
i n J O  -

• V 

- 

- 

• V -

On the other hand , given such a sequence it is standard practice to take R°3 as the

sample space and via• the Ko]irogorov theory , construct a co~ tt ab]y additive iz’aasure

on the Bore 1 sets of R ’. [This is also the countably additive extension to n uclear

Spaces via the Minlos theorem). This is in fact the Wiene r process theory, in which

of course , all of £2 has zero reasure . Both set ups of course agree on the !r~asures

4 of cylinder sets . What is rendered difficult by using £2 as the sample space is the

notion of a random variable . Whereas this is trivial in the model -- any Borel-

measurable function being a random variable -- it is the central issue in the £2 
-

set-up. In other words, given arty functional f(•)  on L2[R~; (0 ,T)] , even 
V

- continuous thereon, it need not define a randon variable. We define it as a ranc~~i

- v riable if and only if for any sequence ~~ of finite din~nsional projections

converging strongly to the identity , the sequence tf( P~(•) } is Cauchy in

probability, and all such sequences are equivalent. Thus we have a smaller class

of random variables; the implication being that the Ito integra ls in the Wiener -

process theory may not correspond to randor’-variables on £2. Moreover the ‘limiting’

notion correspo nds to the ‘ban&idth expending’ notion . -



• • 

- 

2.: ~~~~~~~~ 
Ratio: White Noise Theory,. -

V Let us nc~ examine likelihood ratios (Radon Nikodyrn derivat ives) in te~~s of

the white noise theory. Let
- 

- 
- .y(t) = S(t) + NCt) 0 < t  < T < 

- 

V (2.1)

where SC .) and N(•) are independent pr ocesses. We shall assure that the s ig~ial

S(•) has finite energy: V 
- 

~V

E( IJ S Ct )11 2)dt < (2.2)

- For each t,0 < t < T , let - - 
- V - 

V - 
V • -

-

WCt ) = L2ER ; (O ,t))

We shall shorten W (T) to sisi~1y W. Under condition (2. 2) , the process S C )  induces

a countebly additivie ~~asure on W (and hence on W (t) for each t).. - [The cylinder

measure on W can be extended to be countably additive, in other words ; this is a

• x consequence of the Sazonov theorem see [ 2]). Thus (2.1) defines a weak

distribution on W defined by the characteristic function : 
-

V 
-

. 
-

. 

E[ë~~~”~~ ] C5(h) Exp - 1/2 1 1h1 1 2 V 
- 

- 

V 

(2.3)

where - 

:
- 

- V - 

-

- C5(h) = ECe S,~~) 
- 

: - 

V 

- 
-

. 

(2.~ )

- 
where we have used the inner-product notation: - 

- - 

-
- 

- 
- 

-

. 
-

V -
. V - -

CS ,h] =J (S(t) , h(t))dt , h i  W.
0 - -

. -
.

Then the cylinder n~asure induced by y () is absolutely continuous with respect

to Gauss n~asüre and the Padon-Nikodym derivative is defined by the function:

- f(w) = f ’ Exp — 1/2 C I s~ j
2 

— 2 ES ,ca) ~ 
- (2.5)

• 

V 
w . - - .

•

. 

- 
.

‘ 

~~~~

- -

- — - •VV .~ VV •~ - — -  - -~~~ - . -



• Thus for~ any cylinder set C,

- 

V i~i~(C) liraft •f ~~~~~ 
~~~~~~~ 

V - 

- 
V

where P is any sequence of 
V 
finite dimensional projections strongly convergent to -

the identity . This result has been proved in ~~ V

Let C~~
} be an orthonori~al basis in W arid let L denote the mapping of ~J into

4 - 

- 

• 

V 

- 

-
. V 

- 

- 

- - - V
•

Let 

a, a~ [x(a) , ~~ (a)]th .

V 

- Let denote the measure induced on £2 by this mapping. 
- 

Then we cart rewrite (2.5) 
-

in the fo~ n - 

V •
.. 

V 

- 
-

• ft~ ) Exp — 1/2 ([~ ,~~
) — 2 ~~~‘ ~~fl 

V 

- 

- - 

(2.6)

It must be e~~hasised that (2.6 ) is defined for every e1e.~ent c~i in W. Note also that

- 

(2.6) can be defined with respect to any orthononi~al system ~~~~ 
- 

• - - 
-

The likelihood functional f(y) where y(~ ) is the observation, will nec-i be -

expressed in a form similar to ( L & ) .  Por this purpose , let (2.6) be defined with 
-

respect to the orthonor~ a1 system ($ }. Fo:-~ each t , 0 c t  < T , define the operators

A Ct) , mapping W into t2 by: V 
- 

V V 

- - -

V t - - •. - 
- V - :

A(t) x = a; a~ £ t~ (a)~ x(cr)]th 
- 

V 

- - (2.7)

Let 
V • . • -

R (t) = ACt) A(t )~~. V - . 

- 
V (2.8)

Then the Rado~-Nikodym derivative of the measur e induced by the process y ( )  over

(0 ,t) with respect to Gauss measure on W(t) is given by:

- -— - VV

•

~~ 

- 

-: - . 

- 

V 

.



f (t ,w) Exp — 1/2 t [R (t ) t ,~~] — 2 [t , A(t)c~)} d~i (2.9)
£

Note that CT) L. Let P~ denote the projection operator corresponding to the

first n basis functions 1=  l,...n. Then we define

= lim EE~ fA ( t )  Pay] (2.10)

As shown in [3) , we have (Bayes For~nula) that

~ Exp - 1/2 C[R(t)C,~ ] - 2 [~, A (t)y]} d~~
(t) 2 

- 
V~~~~~ (2.11)

f~ 
Exp — 1/2 {ER(t)t ,i] — 2 [~, 

A(t)y)} dI1
~ 

V

Note that, by Schwartz Inequality

A 
2 j  1k11 2 Exp - 1/2 {CR(t)~~~] - 2 [~, 

A(t)y)} d
~

J
~

I k ( t ) I l  2

V - J’ Exp — 1/2 {[R(t)~ ,~ ] 2 [~, 
A(t)y )} dji~

- I I c i i ~ Exp — 1/2 ~I R(t)~ — A(t)y1 1
2 d~~ 

-

Exp — 1/2 fl R(t)~ — A (t)yJ f
2 d~~ •

< c Et fl~~I~~~] Exp + 1/2 (II A (t)yI J + k) 2 , 0 < c, k < (2.12 )

It’- should be noted that such an estimate is not available in the Wiener process

vers ion. ~~ r’eover we shall sh~~ that (2.9) is actually absolutely continuous in t

with an L2-derivative. Let ~~t) be infinitely differentiable with cal?act support

in (O ,T). ~~~~~~~~~~ V V V -

(f(t ,w) $‘(t) )dt 
- 

V

£2 
I (Exp — 1/2 ([R(t)c,c] — 2 t ç, A (t)03]} •‘(t)dt]} d3z~



~2 
(10

T 
- ~~2 II~ 1(t) c1 f 12 +~ (~~~ .(t )~~1, ~(t)1) (E~~ •- 1/2 C [R(t )~ 3~ 1

V 
- 

• 

— 2 [1 , A(t )~i]} 4( t)cft) dp~ (2 .13) 
-

~.fnere we note that both - 
- 

-

• • 

2 
-

~~~~~~~ 

- 
V

- II E~-(t )~. I1 and [E~ .( t)~~., c~(t) ) 
- 

• - V 

V

• 
V 

~~~
1 1 3. 

- - - 
- 

V - - 
V

- 

are in L2 [0 ,T) for each r in £2. Hence the derivative is (defined a.e. U < t  <T):

V J ~ (-4I1E~ (t)t.1J 2 + fX~.(t)~ -, w (t ))) Exp - 1/2 {[R(t)~~~ ] - 2 [~ , A( t)~3)} d~i• 2 . 1  1 . 11 1  
- 

- • • :~~~~~~

we shall next prove that - 
V 

- 
- 

V 

- 

-

V N V V - 
- 

V 
V 

-

- - 

- 
~~(t) E~~ (t)r ~ (t) 0 ct  c T  

- 

- 

V 
- V - 

V -
. 

- 

V 

- 

- 

-

- - 
converges in the norm of W. But this is L-t~ecliate from the fact that , analogous to -

• 0 -

(2 .12): V 

-

2 N 
V 

2 -

II~~(t)II < E [ 11E4 .(t)c 11 2] Exp + 1/~ ~A(t)y[I a.e. 0 < t < T
• 11 2. -

- 

•
V 

• :-  
V V

A .  A 
V 

; V 

- 
- V

.

S(t) = z4 .(t )t .(t )  V V • - - - -

- ~~ V V - - 
V - 

- 
-

- 
V - - f  I I~$1(t)

~1l 1 2 Exp - 1/2 {[R(t)~~~ ) - 2 [~ , A (t);]} ~~~ 
V

IS(t).I 1
2 V -

= 

- - 

V 
-

-

- 
V 

- f Exp — 1/2 {[R(t)~~,~] — 2  [c, A (t)y]} 
~~~~~ 

— 

- - 

V 

- 

-

- £2 - 

V 

- 
V - 

V 

- - -

~~eh from (2.13) we can write: V 

- 

- V~

V A A V 

2 A 
V

~~ Log f(t , y) — 1/2 (J IS(t)112 — 2 ES(t) , y(t)) + IIS (t)Ji — J J S ( t ) J j  } - 
-

and hence finally , for the log likelihood functional : 
V 

- 

- 

- 

V

• Log f(y) 
V 

- 

- 
-

V - 1 -



( T A  2 T A
— 1/2 1.1 II s(t)II dt — 2  f [S(t ) , y(t )]dt 

-

1

T 
[~~~ )II _ II ~ t)II 2J ~~~~

} (2.13)

we note that the third term can also be expressed as 
V

- 
limit E [I I S ( t ) — S(t)112 A(t )P y] 

- 

(2 .1~4)

The formula (2.13) differs from the Wiener process version in the appearance of the

third term; in the case where S(t) is Gaussian , we 
- 
know that (2. 1t~) reduces to 

-

A 2 -

EL 11S(t) — S(t ) 1I 3 - 
- 

. .  
V 

-

which is then also independent of the observation y(~ ) ; see [3]. Note that (2. l~) 
- -

can be large in the case where the noise level is large . For~mla (2.13) was derived

in [3] for a seemingly less general case by a different method. Finally we remark

that (2.13) is consistent with the ‘cirele differential’ forinalism of Ito [t i].

0 V - V
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